MySQL 自身简单、高效、可靠,是又拍云内部使用最广泛的数据库。但是当数据量达到一定程度的时候,对整个 MySQL 的操作会变得非常迟缓。而公司内部 robin/logs 表的数据量已经达到 800w,后续又有全文检索的需求。这个需求直接在 MySQL 上实施是难以做到的。
原数据库的同步问题
系统高耦合,侵入式代码,使得业务逻辑复杂度增加 方案不通用,每一套同步都需要额外定制,不仅增加业务处理时间,还会提升软件复复杂度 工作量和复杂度增加
解决思路及方案
调整架构
改进数据库
成果展示前后对比
方案实施细节
MySQL Kafka Maxwell(监听 binlog) Logstash(将数据同步给 elasticsearch) Elasticsearch
1. MySQL配置
本次使用 MySQL 5.5 作示范,其他版本的配置可能稍许不同需要
-- 创建一个 用户名为 maxwell 密码为 xxxxxx 的用户 CREATE USER 'maxwell'@'%' IDENTIFIED BY 'XXXXXX'; GRANT ALL ON maxwell.* TO 'maxwell'@'localhost'; GRANT SELECT, REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'maxwell'@'%';
开启数据库的 `binlog`,修改 `mysql` 配置文件,注意 `maxwell` 需要的 `binlog` 格式必须是`row`。
# /etc/mysql/my.cnf [mysqld] # maxwell 需要的 binlog 格式必须是 row binlog_format=row # 指定 server_id 此配置关系到主从同步需要按情况设置, # 由于此mysql没有开启主从同步,这边默认设置为 1 server_id=1 # logbin 输出的文件名, 按需配置 log-bin=master
sudo systemctl restart mysqld
select @@log_bin; -- 正确结果是 1 select @@binlog_format; -- 正确结果是 ROW
# /etc/my.cnf log_slave_updates = 1
-- robin.logs show create table robin.logs; -- 表结构 CREATE TABLE `logs` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `content` text NOT NULL, `user_id` int(11) NOT NULL, `status` enum('SUCCESS','FAILED','PROCESSING') NOT NULL, `type` varchar(20) DEFAULT '', `meta` text, `created_at` bigint(15) NOT NULL, `idx_host` varchar(255) DEFAULT '', `idx_domain_id` int(11) unsigned DEFAULT NULL, `idx_record_value` varchar(255) DEFAULT '', `idx_record_opt` enum('DELETE','ENABLED','DISABLED') DEFAULT NULL, `idx_orig_record_value` varchar(255) DEFAULT '', PRIMARY KEY (`id`), KEY `created_at` (`created_at`) ) ENGINE=InnoDB AUTO_INCREMENT=8170697 DEFAULT CHARSET=utf8
2. Maxwell 配置
本次使用 maxwell-1.39.2 作示范, 确保机器中包含 java 环境, 推荐 openjdk11
下载 maxwell 程序
wget https://github.com/zendesk/maxwell/releases/download/v1.39.2/maxwell-1.39.2.tar.gz tar zxvf maxwell-1.39.2.tar.gz **&&** cd maxwell-1.39.2
一个是需要被监听binlog的数据库(只需要读权限) 另一个是记录maxwell服务状态的数据库,当前这两个数据库可以是同一个
host 需要监听binlog的数据库地址 port 需要监听binlog的数据库端口 user 需要监听binlog的数据库用户名 password 需要监听binlog的密码 replication_host 记录maxwell服务的数据库地址 replication_port 记录maxwell服务的数据库端口 replication_user 记录maxwell服务的数据库用户名 filter 用于监听binlog数据时过滤不需要的数据库数据或指定需要的数据库 producer 将监听到的增量变化数据提交给的消费者 (如 stdout、kafka) kafka.bootstrap.servers kafka 服务地址 kafka_version kafka 版本 kafka_topic 推送到kafka的主题
启动 maxwell
./bin/maxwell --host=mysql-maxwell.mysql.svc.cluster.fud3 --port=3306 --user=root --password=password --replication_host=192.168.5.38 --replication_port=3306 --replication_user=cloner --replication_password=password --filter='exclude: *.*, include: robin.logs' --producer=kafka --kafka.bootstrap.servers=192.168.30.10:9092 --kafka_topic=maxwell-robinlogs --kafka_version=0.9.0.1
3. 安装 Logstash
wget https://artifacts.elastic.co/downloads/logstash/logstash-8.5.0-linux-x86_64.tar.gz tar zxvf logstash-8.5.0-linux-x86_64.tar.gz
rm config/logstash.yml
# config/logstash-sample.conf input { kafka { bootstrap_servers => "192.168.30.10:9092" group_id => "main" topics => ["maxwell-robinlogs"] } } filter { json { source => "message" } # 将maxwell的事件类型转化为es的事件类型 # 如增加 -> index 修改-> update translate { source => "[type]" target => "[action]" dictionary => { "insert" => "index" "bootstrap-insert" => "index" "update" => "update" "delete" => "delete" } fallback => "unknown" } # 过滤无效的数据 if ([action] == "unknown") { drop {} } # 处理数据格式 if [data][idx_host] { mutate { add_field => { "idx_host" => "%{[data][idx_host]}" } } } else { mutate { add_field => { "idx_host" => "" } } } if [data][idx_domain_id] { mutate { add_field => { "idx_domain_id" => "%{[data][idx_domain_id]}" } } } else { mutate { add_field => { "idx_domain_id" => "" } } } if [data][idx_record_value] { mutate { add_field => { "idx_record_value" => "%{[data][idx_record_value]}" } } } else { mutate { add_field => { "idx_record_value" => "" } } } if [data][idx_record_opt] { mutate { add_field => { "idx_record_opt" => "%{[data][idx_record_opt]}" } } } else { mutate { add_field => { "idx_record_opt" => "" } } } if [data][idx_orig_record_value] { mutate { add_field => { "idx_orig_record_value" => "%{[data][idx_orig_record_value]}" } } } else { mutate { add_field => { "idx_orig_record_value" => "" } } } if [data][type] { mutate { replace => { "type" => "%{[data][type]}" } } } else { mutate { replace => { "type" => "" } } } mutate { add_field => { "id" => "%{[data][id]}" "content" => "%{[data][content]}" "user_id" => "%{[data][user_id]}" "status" => "%{[data][status]}" "meta" => "%{[data][meta]}" "created_at" => "%{[data][created_at]}" } remove_field => ["data"] } mutate { convert => { "id" => "integer" "user_id" => "integer" "idx_domain_id" => "integer" "created_at" => "integer" } } # 只提炼需要的字段 mutate { remove_field => [ "message", "original", "@version", "@timestamp", "event", "database", "table", "ts", "xid", "commit", "tags" ] } } output { # 结果写到es elasticsearch { hosts => ["http://es-zico2.service.upyun:9500"] index => "robin_logs" action => "%{action}" document_id => "%{id}" document_type => "robin_logs" } # 结果打印到标准输出 stdout { codec => rubydebug } }
# 测试配置文件* bin/logstash -f config/logstash-sample.conf --config.test_and_exit # 启动* bin/logstash -f config/logstash-sample.conf --config.reload.automatic
4. 全量同步
INSERT INTO maxwell.bootstrap ( database_name, table_name, where_clause, client_id ) values ( 'robin', 'logs', 'id > 1', 'maxwell' );
# 检测 elasticsearch 中的数据量 GET robin_logs/robin_logs/_count